MPTCP APl in Ruby

Grégory Vander Schueren
Raphaél Bauduin
Thibault Gérondal

Option 1: via Ruby standard library

- First, we tried a “pure Ruby” solution

- Ruby standard library exposes getsockopt(), why not reuse it?

- Can easily use getsockopt() to retrieve data (ie. subflows ids).
- This works, we easily get a stream of bytes...

- Challenge is to map this stream of bytes to Ruby objects!
- We use the ‘FFI’ library for this, seems promising, very actives library.

class SubStatus < FFI::Struct
layout :id, :uint8,
:low_prio, :uintl6

end

class SublIds < FFI::Struct

layout :sub_count, :uint8,
:sub_status, [SubStatus, 256]

end

def self.get_sub_ids(sock)

opt = sock.getsockopt(:IPPROTO_TCP, MPTCP_GET_SUB_IDS)
memBuf = FFI::MemoryPointer.new(SubIds).put_bytes(@, opt.data)
SubIds.new(memBuf)

end

Option 1: via Ruby standard library CONTD

- Can easily use getsockopt() to retrieve data (ie. subflows ids).
- BUT, the getsockopt() exposed by Ruby only allows to GET data.
- Seems reasonable... right?

- We CANNOT set data like with getsockopt() like in the MPTCP API

- We thus cannot use it for opening subflows, closing subflows, etc.
- Need for another solution...

Option 2: exposing libc function into Ruby

- With FFI, really easy to expose libc functions into Ruby

module MPTCP

extend FFI::Library

fHi_lib "¢’

attach_function :getsockopt, [:int, :int, :int, :pointer, :pointer], :int
end

MPTCP.getsockopt(...)

Exposing libc function into Ruby CONTD

- Seems very promising.
- BUT, mapping from C structs to Ruby objects seems incorrect.
- Probably our fault...
- Should dig more into FFI library & read documentation in details.

- In Ruby we can “reopen” classes and add methods to them.
- No need to patch Ruby itself
- Could simply write a library that adds methods to the Socket class

